
Chest X-Ray Feature Pyramid Sum Model with 
Diseased Area Data Augmentation Method 

Abstract
Deep learning has shown considerable promise in medical image analysis, but significant challenges remain. These stem from the inherent complexities of medical images, such as 
varying sizes of lesions within the same image and the potential coexistence of multiple diseases. To address these issues, we propose a novel model combining TResNet [6] 
with Feature Pyramid Network (FPN) [4]. This model adeptly handles multi-label classification, demonstrating robust performance across a range of lesion sizes. Furthermore, most 
medical images follow a long-tail distribution, presenting class imbalance problems, where the occurrence of one lesion often correlates with the presence of others. Considering 
these correlations, we introduced a strategy for dealing with the class imbalance issue by augmenting minority classes using bounding box information of the disease. Our proposed 
approach offers a novel solution for handling the unique challenges in deep learning-based medical image analysis, paving the way for more precise interpretations of complex 
medical images. The performance of mAP in 26 disease classes has been improved from 32.76% to 33.37% in a single model, and 35.11% in ensemble model.

Introduction
-The CXR-LT Challenge aims to solve the class imbalanced multi-label classification problem of 26 lung diseases. The 
size and shape of the lesions vary depending on the type of disease. 

-This study proposes a model called the Feature Pyramid Sum Model (FPSM) based on the TResNet BaseNetwork, 
which takes into account the various sizes of lesions.

-Furthermore, we attempted to address the Long-tail problem by proposing the Diseased Area Data Augmentation 
Method (DADAM) as a data augmentation approach.

-Moreover, we successfully enhanced the performance of the baseline TResNet model by applying various Hyper 
Parameter Optimization (HPO) techniques and Neural Architecture Search (NAS).

-We randomly split the CXR-MIMIC dataset into an 80-20 ratio for training and validation datasets.

Method

Experiment Result (con6nued…)

Conclusion & Future work
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Figure 2. Illustrative images using Diseased Area Data Augmentation Method (DADAM)
(a) Original patch image          (b) augmented with normal image     (c) augmented with disease image  (d) Corr. Coefficients

Figure 1. Chest X-Ray Feature Pyramid Sum Model (CXR-FPSM)

AIX division
Future R&D 

Changhyun Kim*1, Giyeol Kim
†2, Sooyoung Yang

‡2 ,Hyunsu Kim𝜓2, Sangyool Lee*3, Hansu Cho*3

* SK Telecom
† Gacheon University
‡ChungAng University

𝜓SungKyunKwan University

BioMedical AI team

Table 2. Ablation Studies on both 
Model and Dataset

Table 3. FPSM performance on MURA 
MSK dataset [9] 

-We extract layer-specific feature maps, considering various organ sizes, and convert them into a single 1D-channel vector.

-(Optional) Furthermore, by incorporating binary embedding, we can provide an additional indicator of whether the data is synthetic or 
not. 

- We compute the multi-label classification loss from features extracted on each different layers and aggregate the classifier outputs 
according to the resolution of features, achieving an ensemble effect.

-(a) Original disease patch images from the VinDR-CXR dataset.

-(b) (CutMix approach) Cut & paste disease patches onto normal images using bounding box information from the VinDR-CXR, NIH 
Chest X-ray, and ChexDet datasets. 

-(c) (Mixup approach) Images created by attaching a randomly selected disease patch to a disease image along with another disease 
patch that has the highest correlation, with a transparency of 0.6.

-(d) Augmented MIMIC dataset has similar correlation coefficient matrices as MIMIC datasets showing preservation of cooccurrence in 
different diseases. (Diagonal components are all set to zero and did the absolute process on all matrix components)

Figure 3. Number of samples and AUC 
performance on each class 

- A total of 16 experiments were conducted, comprising four variations of binary encoding (synthetic or original) 
combined with either sum or concatenate operations, and four different feature combinations. 

-Overall, the performance of the (a) and (b) cases, where the final features are summed, was superior compared to the 
sequentially concatenated (c) and (d) cases.

- For the performance metrics of our interest, mAP and AUC, the combination of features with the sum method, 
specifically when combining the 4th, 3rd, and 2nd features, demonstrated the highest performance (mAP=33.10%, 
AUC=82.83%).

-The proposed FPSM model outperforms MoCo-v2 
(Self-supervised approach) [5] and ViT [8] methods by 
7.4% and 3.6% in terms of mAP performance, 
respectively.

-When applying the proposed DADAM data 
augmentation, the performance decreases by 1.4% in the 
case of ViT, whereas it improves by approximately 
0.27% in the case of FPSM.

-[Model Generalization] The proposed FPSM model 
also demonstrates superior performance compared to 
state-of-the-art models in the binary classification of 
Musculoskeletal abnormalities on the MURA MSK 
dataset.

-In the original dataset (210K set), we observed a 
noticeable 1% improvement in performance for the perfect 
minority classes such as 'Pneumomediastinum' and 
'Pneumoperitoneum' when fine-tuning with the 
augmented dataset (320K set).

-Other minority classes showed less significant changes in 
performance, suggesting the need for additional 
experiments with varying sample counts and transparency 
adjustments in the future.

-As an exception, in the case of 'No Finding,' there was 
no change in the number of samples, which led to an 
overall decrease in performance.

-We successfully propose a network, “FPSM (Feature Pyramid Sum Model)”, for recognizing various-sized lesions in 
medical images. We compare it with the basenetwork, TResNet, and confirm its superiority in most performance metrics (F1, 
mAP, Precision, AUC) in medical image recognition.

-To address the long-tail problem, we augmented data for minority classes with more than 15k samples on each class using 
both CutMix [2] and MixUp [3] techniques with various bounding box labeled datasets. We observed an increase in mAP of 
approximately 0.27% as a result.

-The model submitted for the challenge achieved a performance of 35.1% at validation and 32.8% at the test phase by 
ensembling the final output probabilities of three models: 33.10% (FPSM without binary encoding), 33.04% (FPSM with 
binary encoding), and 33.37% (FPSM with DADAM fine-tuning), using a mean ensemble.

-It is necessary to conduct separate experiments to understand the impact of CutMix (the number of patches being attached) 
and MixUp (flexibility to control transparency levels) techniques on the performance of minority classes.
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1Feature Pyramid=4th+3rd+2nd+1st , 7part label embedding = 0, use_concatenate=0
2Feature Pyramid=4th+3rd+2nd , 7part label embedding = 1, use_concatenate=0
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Table 1. Performance of Feature Pyramid Sum Model (FPSM) Classifier

(a) use_binary_enc=0, use_concatenate=0 (b) use_binary_enc=1, use_concatenate=0

(c) use_binary_enc=1, use_concatenate=1 (d) use_binary_enc=0, use_concatenate=1


